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ABSTRACT

This study introduces a novel texture analysis scheme
applied to perfusion volumes in dynamic contrast-enhanced 
(DCE) breast MRI to provide a method of lesion 
discrimination. DCE MRI was applied to 24 lesions (12 
malignant, 12 benign). Automatic segmentation was 
performed for extraction of a lesion volume, which was 
divided into whole, rim and core volume partitions. Lesion
perfusion volumes were classified using three-time-points
(3TP) method of computer-aided diagnosis. Receiver 
operating characteristic curve (ROC) analysis was 
performed for differentiation of benign and malignant 
lesions using texture features of perfusion volumes classified
by the 3TP method. When using the texture features of 
perfusion volumes divided into rim and core lesion volume,
the texture features to have more improved accuracy
appeared than using whole lesion volume. This result 
suggests that lesion classification using texture features of
local perfusion volumes is helpful in selecting meaningful
texture features for differentiation of benign and malignant 
lesions.

Index Terms— Texture analysis, breast MRI, co-
occurrence matrices, 3TP method, tumor segmentation

1. INTRODUCTION

Dynamic contrast-enhanced (DCE) MR imaging is now an 
integral part of a proposed standard diagnostic protocol for 
breast cancer [1]. The advantages of this approach originate
from the observation that the quantitative time courses of 
MR imaging signal intensity appear to be capable of 
enabling differentiation of benign and malignant lesion [2].
Thus, signal-intensity time course after injection of contrast
agent was determined to evaluate the perfusion
characteristics of enhancing breast lesions.

Several studies have reported a marked difference 
between the slope of enhancement uptake of benign and 

malignant lesions: malignant lesions enhance earlier and 
greater than benign lesions [3], [4]. Kuhl et al. have showed 
that use of curve shape (washout, plateau, or persistent 
enhancement) based on three-time-points (3TP) method, 
which generates a colormap allowing pixel-by-pixel kinetic 
analysis from the intensity values measured at three 
judiciously chosen time points: the pre-contrast time plus 
two post-contrast times, can distinguish malignant lesions 
from benign and demonstrated that this approach is more
reliable in comparison with the slope of enhancement uptake
[5], [6].

Evaluating the information of DCE-MRI is a demanding 
task for the human observer due to the multivariate nature of 
the data, so the diagnosis is time consuming and frequently
suffers from inter-and intra-observer variability [7]. The 
placement of regions of interest (ROIs) for measuring 
averaged temporal kinetic signals or the evaluation of 
morphological features is subjective and strongly depends 
on the observer’s experience. Collins and Padhani have 
indicated that whole tumor ROIs is inappropriate for 
evaluation of malignant lesions and analysis of imaging data
needs to reflect the heterogeneity of tumor vascular 
characteristics [8]. The heterogeneity of tumor vasculatures
can be quantified by texture analysis of computer-aided 
diagnosis (CAD).

The work presented in this study uses three-dimensional 
(3D) co-occurrence-based texture analysis of a novel
approach to distinguish between benign and malignant 
lesions from DCE-MR images. With the use of texture 
analysis, statistical information regarding lesion voxels,
which reflect the class label assigned by 3TP method after 
automatic segmentation of a lesion, is gathered. In addition, 
this analysis is performed based on the hypothesis which 
texture features of local perfusion volumes such as tumor 
rim and/or core are more helpful for differentiation of 
benign and malignant lesions. The purpose of this study is to 
classify of 3D texture features of perfusion volumes assigned
by 3TP method and to examine meaningful texture features 
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having improved accuracy in discrimination between benign 
and malignant lesions.

2. MATERIALS AND METHODS

2.1. Materials and Protocols

DCE-MRI was applied to 24 lesions (12 malignant, 12 
benign) using 1.5 T Sonata (Siemens, Erlangen, Germany). 
First, the pre-contrast T1 weighted 3D fast low angle shot 
(FLASH) sagittal image (TR 4.9 ms, TE 1.83 ms, FA 12°, 
FOV 170 mm, matrix 448×448, acquisition time 84 s, slice 
thickness 1-1.4 mm without gap) was obtained with fat 
suppression and next four consecutive post-contrast images 
using the same condition after an injection of 0.1 mmol/kg 
Gd-DTPA (Magnevist, Schering, Berlin, Germany). The 
contrast material was administered manually at a flow rate of
2 ml/s for 5 sec and imaging was performed within 15 sec 
after injecting the contrast agent.

2.2. Thresholding of Suspicious Regions

3D rigid registration (fixed image, pre-contrast image; 
moving image, post-contrast images) were performed for 
reducing the artifacts of patient movement, where tissue 
deformation was not considered in order to avoid excessive
modification of original grey levels. Initially, we constructed 
our proposed perfusion index (PI) using both signal intensity 
and enhancement curves for subsequently extracting 
suspicious regions by the threshold as the following
expression.
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Thresholding of suspicious regions was based on the 
nonparametric and unsupervised method of automatic 
threshold selection presented by Otsu [9].

Table 1. Notations used in the expression (1)
MI The maximum intensity value among all post-

contrast series
k The series number of the maximum intensity phase

PEi Percent enhancement of the ith series
SERi Signal enhancement ratio of the ith series
Posti The ith post-contrast image
PostN The last post-contrast image
Pre Pre-contrast image
N The total number of post-contrast series

2.3. Lesion Segmentation

The connected threshold region growing segmentation was 
performed in order to extract a connected component from a 
user-defined seed on the threshold image, and hole-filling on 

its segmented region. Sphericity and center distance of mass 
to surface area ratio on the threshold image were used for 
determining whether the segmented volume should be 
eroded or not, and the number of erosion if the segmented 
volume should be erode. While erosion was performed 
repeatedly on the segmented volume, the connected 
threshold region growing segmentation followed each 
erosion. Dilation was initially executed by the equal number 
of erosion operation and next performed in the range above 
the median value between maximum and mean values of PI 
within dilation volume in order to compensate speculate
lesion boundary removed by erosion. Finally, erosion of 
whole lesion volume was performed until the volume after 
erosion operation was under 1/3 of whole lesion volume for 
separating the lesion rim and core volumes.

2.4. 3TP Classification

The enhancement curves for each lesion were classified 
based on the criteria of the 3TP method. The enhancement 
properties were quantified by computing the PE1 and SER1
(Figure 1).

Figure 1. Voxel classification scheme based on PE and SER values

2.5. Texture Analysis

A second-order joint conditional histogram (also called a co-
occurrence matrix) is computed given a specific distance 
between pixels and a specific direction. The two random 
variables are the class label of one pixel (c1) and the class 
label of its neighboring pixel (c2), and the neighborhood 
between two pixels is defined by a user-specified distance 
and direction. Once a co-occurrence matrix is computed, 
statistical parameters can be calculated from the matrix.

For an Nc class label image, I, the co-occurrence matrix
is defined as:

      ,
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where the image size is L×M×N, d and  are distance 
and direction between pixel pair <I(m, n), I(m’, n’)> and  is 
defined as:
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The elements of co-occurrence matrix, p ,d(i, j), 
represent the relative frequency by which two pixels with 
class labels i and j, that are at a distance d in a given 
direction , are in neighborhood. The immediate neighbors 
of any pixel (d=1) can lie on thirteen possible directions, 
=( 1, 2)=(0°, 0°), (0°, 45°), (0°, 90°), (0°, 135°), (45°, 0°), 

(45°, 45°), (45°, 90°), (45°, 135°), (90°, NA), (135°, 0°),
(135°, 45°), (135°, 90°) and (135°, 135°). Texture 
calculations are best performed on symmetrical matrices. It 
is seen that:
                                ( ,  - ) ( , )TP d P d                           (3)

where PT(d, ) is the transpose of P(d, ). Thus, a 
symmetric co-occurrence matrix is given by:
                        1( ,  ) ( ,  ) ( , )

2
T

sP d P d P d             (4)

Assuming isotropy (no direction) we can pool the 
frequencies of co-occurrence matrices with different 
orientations  and approximately the same distance d. This 
provides a directional invariant co-occurrence matrix.
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The elements C(i, j) of normalized direction invariant 
co-occurrence matrix C is given by:
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Where Pisotropic(i, j) are the elements of the isotropic co-
occurrence matrix and Nc is the number of classes assigned 
by the 3TP method. In this study, we used a distance value 
of one to generate the co-occurrence matrices, and eight 
texture features: contrast (CON), correlation (COR), 
dissimilarity (DIS), entropy (ENT), inverse difference 
moment (IDM), inverse difference (INV), uniformity (UNI)
and maximum probability (MAX) (Table 2).

Table 2. Co-occurrence matrix derived texture features
Feature 

No.
Feature 
Name Formula

1 CON 2
,

( ) ( , )
i j

i j C i j

2 COR
,
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i j x y

i j

2 2
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,
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4 ENT ,
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i j
C i j C i j

5 IDM 2,

( , )
1 ( )i j

C i j
i j

6 INV ,

( , )
1i j

C i j
i j

7 UNI
2

,
( , )

i j
C i j

8 MAX max C

3. RESULTS

The 3TP classification results were shown within a lesion 
volume by different colors reflecting each enhancement
pattern. Homogeneity or heterogeneity of the enhancement 
patterns within the lesion volume was able to be visually 
identified and the eight texture features confirmed (Figure 2).
Table 3 shows the results of ROC analyses using texture 
features in whole, rim and core lesion volumes, respectively.
With the use of texture features which were calculated by 
separating rim and core volumes of a lesion, more improved 
sensitivity or specificity was seen than using whole lesion 
volume. The texture features within core lesion volume
showed higher sensitivity in COR, IDM and INV than others,
and the texture features within rim lesion volume relatively 
higher specificity in CON, COR, ENT, IDM, INV, UNI and 
MAX and relatively higher accuracy in all features.

Table 3. The results of ROC analyses
Lesion 
volume Feature Sensitivity Specificity Accuracy

CON 83.3 % 58.3 % 71.5 %
COR 83.3 % 50 % 67.4 %
DIS 83.3 % 66.7 % 72.9 %
ENT 100 % 41.7 % 68.1 %
IDM 75 % 75 % 74.3 %
INV 75 % 75 % 74.3 %
UNI 100 % 41.7 % 68.1 %

Whole

MAX 100 % 41.7 % 65.3 %
CON 83.3 % 66.7 % 79.9 %
COR 66.7 % 75 % 69.4 %
DIS 83.3 % 66.7 % 78.5 %
ENT 83.3 % 66.7 % 77.8 %
IDM 75 % 83.3 % 79.9 %
INV 75 % 83.3 % 79.9 %
UNI 83.3 % 66.7 % 75.7 %

Rim

MAX 83.3 % 66.7 % 70.1 %
CON 83.3 % 58.3 % 58.3 %
COR 100 % 41.7 % 56.9 %
DIS 83.3 % 58.3 % 63.2 %
ENT 100 % 41.7 % 64.6 %
IDM 83.3 % 58.3 % 64.6 %
INV 83.3 % 58.3 % 66.7 %
UNI 100 % 41.7 % 63.2 %

Core

MAX 100 % 41.7 % 62.5 %
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(a)                                                                                  (b)
Figure 2. Examples of color maps of enhancement patterns assigned by the 3TP method and texture features within whole volume of (a) 
malignant and (b) benign lesions

5. DISCUSSION

This study provides new insight which computationally 
verifies texture features combined with the 3TP method
familiar with radiologists within a lesion. In addition, this 
study considers the importance of lesion segmentation 
before the 3TP classification and texture analysis. The 
appropriate selection of initial lesion segmentation method is 
important for obtaining accurate characteristics of texture 
features within a lesion because the inclusion of normal 
tissue components outside a lesion is able to disturb the 
discrimination between benign and malignant lesions using 
texture features. Thus, we constructed that the difference of 
kinetic features between a lesion and normal tissue 
components was maximized by PI, and were able to achieve 
effective thresholding of suspicious regions by Otsu 
threshold method, which finds an optimal threshold that 
separates the two main classes of an image, background and 
foreground.
       Previous studies have reported the results from using 
texture features in breast DCE-MRI. Tzacheva et al. only 
used region-based analysis rather than voxel-by-voxel
analysis and does not take advantage of the voxel signal 
intensity changes over the entire DCE-MRI time sequence
[10]. Lucht et al. did not show a good sensitivity (84%) or 
specificity (81%) for discrimination between benign and 
malignant lesion voxels [11]. On the other hand, this study
uses texture features of curve types assigned by the 3TP 
method on a voxel-by-voxel basis and shows possibility to 
surpass existing results. In addition, this study suggests that 
use of texture features which are separated by rim and core 
lesion volumes was advantageous to diagnostic accuracy, 
considering the characteristic which malignant lesions have 
relatively more distinct rim enhancement and more 
heterogeneous textures. In the future, it is necessary to 
demonstrate the usefulness of the texture features combined 
with the 3TP method after collecting more patient data.

5. CONCLUSION

This result indicates that lesion classification using texture 
features of local perfusion volumes within a lesion is helpful 

in selecting texture features for differentiation of benign and 
malignant lesions.
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